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Abstract. For the O ( 2 )  anharmonic oscillator with negative anharmonicity and one- 
dimensional double-well potential U ( x )  = (x2-  R2)2/8R2, R is a large parameter for both 
problems, conventional Rayleigh-Schrodinger expansions in power series of I /  R 2  for the 
energy eigenvalues agree. We studied asymptotic expansions for the eigenvalues which 
contain, in addition to the perturbation series, exponentially small terms in R 2  due to the 
tunnelling through corresponding potential barriers. Numerical calculations are also per- 
formed and comparisons with the asymptotic formulae are given. 

1. Introduction 

The phenomenon of quantum-mechanical tunnelling continues to be a subject of active 
study because of its many areas of application and because of its intrinsic interest. 
This phenomenon is the cause for the presence of exponentially small terms in the 
energy eigenvalue in addition to the perturbation series. As it was shown (Bender and 
Wu 1973, Simon 1970, 1982), the large-order behaviour of the perturbation series for 
the anharmonic oscillator with negative anharmonicity depends on the imaginary part 
of the energy, i.e. on exponentially small terms. The situation with double wells 
appeared to be much more complicated (Simon 1982). 

The authors of the present paper started a study of double wells in the late sixties. 
Two problems were considered: the molecular ion H;, including the oblate spheroidal 
equation (Damburg and Propin 1968a, b) and the Schrodinger equation for the one- 
dimensional double-well potential U ( x )  = (x’- R2)’/8R2 (Damburg and Propin 
1971). At that time we limited our study to the exponentially small terms of the lowest 
order, namely, for the double-well potential, by the terms -exp( - $IC’). We obtained 
a system of recurrence relations which allowed us to determine the exact coefficients 
of the ‘perturbation’ series for the energy Ept and for the level splitting A E . =  E, - Eg 
for arbitrary powers of 1/R2 and for any state. In the present paper, based on the 
earlier results, we continue the study of the double-well potential U ( x )  and combine 
with it the consideration of the closely connected problem of the O(2) anharmonic 
oscillator with negative anharmonicity. The computer calculations show that the 
perturbation series for the energy for the double well in one dimension and for the 
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O(2) anharmonic oscillator with negative anharmonicity agree (Seznec and Zinn-Justin 
1979, Avron and Seiler 1981). 

The exponentially small terms which are present in asymptotic expansions of the 
eigenvalues in both problems are proportional to the different powers of the value 
-exp(-fR2). A partial study of the meaning of such terms was undertaken by us 
earlier (Damburg and Propin 1983). We derived the asymptotic formula in K for the 
coefficients b, of expansion in powers of 1 /R2  for the level width r. Here we continue 
to examine other exponentially small terms. Some preliminary ideas on the problem 
were presented by Damburg and Propin (1982) earlier. A different approach to the 
problem considered in this paper was elaborated by Zinn-Justin (1981b, 1982, 1984) 
who, besides others, discussed the question of the summation of the perturbation series. 
The scope of the problems raised in our paper is essentially different. 

2. Double well. Preliminaries 

We consider the one-dimensional Schrodinger equation 

Vg,, = E g , u ~ g , u .  

The potential (x2 - R2)2/8R2 has two minima at x = * R. We assume that R is a large 
parameter. Owing to the symmetry of the problem with respect to the sign of x, there 
are two sets of solutions of equation (1): odds and evens with the energies 

Eg,,  = Eo 7 ;A E. 

In our present approach to the asymptotic solution of equation (1 )  we essentially 
rely upon the method and results we obtained previously (Damburg and Propin 1971). 
We start from the conventional Rayleigh-Schrodinger perturbation theory and find 
the eigenvalue in the form of the expansion 

Epf= EKR-2K 
K =O 

3n2 +3n + 1 34n3 +51n2 +35n + 9  = n + f -  - 
4R2 32R4 

375n4+750n3 +792n2 +417n +89 . . .  
128R6 

where n is a positive integer or zero. 
Formula (2) for the eigenvalue Eg,,  is an unsatisfactory one since a conventional 

perturbation expansion does not allow us to account for exponentially small terms 
which arise because of particle tunnelling through a potential barrier and, first of all, 
the level splitting A E  = E ,  - E,. To overcome the inadequacy of the perturbation 
expansion, we make the substitution n + n + a ( n )  where a -exp(-fR2),  into (2) and 
into corresponding expansions of wavefunctions Vg,,. The value a ( n )  is determined 
by matching solutions of equation ( 1 )  obtained for different regions of x. As a result, 
we obtain a system of recurrence relations which allows us to determine a ( n )  in the 
form of the expansion in power series in 1/R2. We should note, however, that there 
are two algebraic errors in the recurrence relations in the paper by Damburg and 
Propin (1971). For convenience we present the improved formulae in the appendix. 
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The leading term obtained earlier for AE is correct, while the second term in the 
expansion of AE in powers of 1 /  R 2  is correct only for the ground state n = 0. 

Below we just present the corrected and extended results for ( Y ~ , ~  obtained by the 
procedure mentioned (Damburg and Propin 1971) 

(4) 
23n+l R ~ ~ + I  - :R2 

CY0 = e ,  J7Tl ’ (n+l )  

K ,  = -( 102n2 + 102n +35)/48, 

K * =  (10404n4+2808n3-9456n2- 11  868n -3779)/2(48)2, ( 5 )  

K~ = ( 1/(48)4)(-8489 664n6+ 18 595 008n5 + 14 383 008n4 

-21 358080n3-63073584n2-46010448n-11 733688). 

The formulae (2)-(5) are necessary for the present study. 
After CY is found, we can determine the level splitting in the lowest order of a0 

We retain the notation AE for the total difference 

E , -E ,=AE=A&+O(a; ) .  

To avoid cumbersome expressions, we only present below results for n = 0. By using 
formulae (2)-(5), it is quite easy to obtain results for arbitrary n. 

3. The O(2) anharmonic oscillator with negative anharmonicity 

The Schrodinger equation can be written as 

(-y d2/dy2- 1/4y+y/4-y2/8R2- E ) 4 ( y ) = 0 ,  o s y < x .  (7) 

By using the conventional perturbation theory, one can get the following expansion 
for E :  

Eo = n +;, EK 
Ept= c ZK, 

K = O  R 

Seznec and Zinn-Justin (1979) numerically computed 60 coefficients EK for n = 0 
of expansions (2) and (8) and found that they agreed with an accuracy of at least 12 
places and to all orders computed. This observation was ‘sharpened and extended’ 
by Avron and Seiler (1981) who showed that the agreement holds analytically for all 
states at least up to 1 lth order. However, the strict proof of the identity of (2) and 
(8) was not given. Our observation on the identity of (2) and (8) is more fundamental. 
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One of the recurrence relations for the double well, which allows us to find the 
corresonding EK (Damburg and  Propin 1971, formula (17)) is 

2sdjK' = f (n  + s  + l ) ( n  + s  +2)d$:;'' 

+ ( n + s + l ) * d ~ ~ ; " + ~ [ 3 ( n  + s ) ( n + s + l ) + l ] d j K - "  

d r ' =  1 ,  Eo = n +& -2K S s < 2K, 

where K and s are integers. 
The recurrence relation for EK for the O(2) anharmonic oscillator with negative 

anharmonicity is exactly the same. It can be seen from formula (37) of the paper by 
Damburg and Kolosov (1983) where it is necessary to put m = 0 and to make the 
obvious substitutions C i '  = (-1)KfJ2Jd$' and h(lK' = (-1)K2KEK. Therefore, E K  in 
( 2 )  and (8) agree for all n and I<. However, from this fact, as was correctly noted by 
Seznec and Zinn-Justin (1979), the equality of the values E, = ( Eg + E,)/2 and  Re E"'' 
does not follow. One  of the aims of our paper is to study the function 

f ( E )  = &-Re E"". (10) 

4. Double well. Corrections -ai and a: 

As we noted in the introduction, we aim to obtain in asymptotic expansions of E,,,, 
terms which are proportional to the powers of the value ao- exp(-:R2). To perform 
this task, we match again, this time more thoroughly, solutions of equation (1) obtained 
for two different regions of x in the region 1 << R - x << R where both solutions are 
valid. The necessary expressions are given in our previous article (Damburg and Propin 
1971). The result can be represented by the expression 

s i n ( r a , , )  = .r(-l)"RJ"'ag,.(n) ( 1 1 )  

where the function aR.,(n) is defined by formulae (3)-(5). In the first power of a. 
formula ( 1  1 )  naturally comes to the identity ag,u = a,,,. 

The number n in formula ( 1  1 )  should be treated as the procedure 

n + n + a , , ( n  +a,,,(n +. . .) . . .). (12) 

The terms containing different powers of a. in ag,, can be determined in an elementary 
way by using formulae (3)-(5), (1 1 )  and  (12) by expansion in cyo. Finally, to obtain 
Eg,, we use formula (2) for Ept, in which we substitute n + a,,, instead of n and  again, 
where it is necessary, expand the obtained expression in powers of ao. 

+. . .), 
R 8 192R 9216R4 

6 E  = - [ 2 1 n R + 3 1 n 2 - c L ( l ) ] - ~  Y --y+- 
27T 
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-. . .) 47 163 89635 
16R2 512R4 24576R6 

(;[2 In R + 3 In 2 - I)( 1 )I2 - sir2}( 1 - - - - - 

63 825 24483 
8R2 128R4 4096R6 

-[2 In R +3  In 2 - +( l)]  +--. . .) 
+. . .  , 3 17 297 194801 

8R2 32R4 12288R6 
+-- -- 

- .  . .) 47 163 89635 ( 16R2 512R4 24576R6 

+. . .  . 63 825 24483 -- +--- 
8R2 128R4 4096R6 3 

Coefficients b, can be easily computed by using the formulae for ag,u and E,,,. We 
do not present them since they agree exactly with the coefficients calculated by 
Silverstone et a1 (1981) for the similar expansion of r for the O(2) anharmonic oscillator 
with negative anharmonicity. Moreover, we have an equality 

r = +o(~:). (18) 

5. The application of the asymptotic formulae obtained 

The problems of the double well and the O(2) anharmonic oscillator with negative 
anharmonicity can be solved numerically. We compare the numerical (exact) data 
with the results obtained by the asymptotic formulae. Formula (13) for contains 
terms of different powers of ao. It is more convenient to split formula (13) into two, 
the first of which would contain only even powers of ao, the second only odd: 

E, = ; ( E ,  + E , )  = E,, + SE +$iy + O( a:), 

A E  = E, - E g  = A &  + S E  -$Sy+O(ai ) .  

In the present paper we compare asymptotic formulae with the numerical solution of 
equation (1 )  for the modal case, i.e. for the case where the imaginary part of E is 
absent. It corresponds to 

Ec,mod= Ept+SE +o(ai), (21) 

PEmod = A E  + S E  +o( a i ) .  (22) 

We note that numerical data for the solutions of equation ( 1 )  which we are able to 
find in the literature always correspond to the modal case. Having in mind this case, 
we henceforth omit the index ‘mod’ in formulae. We shall consider non-modal 
numerical solutions of equation ( 1 )  in our next paper. 

The asymptotic series in powers of 1/R2 for E,, and A &  are divergent and so do 
not allow us to calculate these quantities exactly. Therefore, the natural question 
arises: are the exponentially small quantities 6E and SE in formulae (21) and (22) 
meaningful values or not? We would be able to answer this question if there were 
explicit expressions for the coefficients E ,  and aK for arbitrary K ,  but this problem 
cannot easily be solved. However, it is possible to obtain asymptotic formulae in K 
for E K  and aK, which would allow us to estimate the term smallest in magnitude in 
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expansions E,, and he /2a0  in powers of 11 R 2  for chosen R which is large. We proceed 
in the spirit of the paper by Bender and Wu (1973) but without strict mathematical 
foundation. The mathematical validity of the similar approach is proved in the paper 
by Damburg et a1 (1984). 

In order to derive the dispersion relation for coefficients E K ,  we should know the 
analytical properties of the function E,( R 2 )  for whole R 2  complex plane (Bender and 
Wu 1973). We simply assume that E, (R2)  is analytic in the whole R 2  complex plane 
except one branch cut running from +O to +CO, where we have found its asymptotic 
form (19). We assume also that for all R2, except the real R 2  axis from +O to +CO, 

the asymptotic expansion of E, (R2)  agrees with EPt. With these assumptions we can 
use for the calculation of the coefficients EK the same formulae which are given in 
the paper by Bender and Wu (1973): 

( R 2 ) K - ' y ( R 2 )  d(R2) 
E . = - - {  1 "  

2.rr 0 

By using quite similar assumptions we obtain a formula for a K ,  asymptotic in K 

+ D + a * . ] ,  (24) 
= -? ( : ) K r ( K  + I ) [  A + C 

r r 4  K K ( K  - 1)  K ( K  - 1)(K - 2 )  

where 

A = $ ( K  + 1 )  +In 6 -  +( l ) ,  

B = -{47[4(K)+ln 6 -  4( 1)]+42}/12, 

C = -{163[+(K - 1) + l n 6 -  +(1)]-  1100}/288, 

D = -{89 635[$(K -2)  +ln 6-  $( 1)]+48 966}/10 368. 

(25) 

Later we show how to improve formulae asymptotic in K ,  for EK. In table 1, we 
compare the results for aK obtained by using asymptotic formula (24) with exact 
values, which we also obtained by using the recurrence relations obtained earlier 
(Damburg and Propin 1971). 

Table 1. Accuracy of the asymptotic formula (24) for aK 

12 - 1.2877 x 10' -1.3074x1O8 
14 -1.4926 X 10" -5050 x 10" 
20 -9.1886 X 10l6 -9.2029 x 10l6 
22 -2.497 33 x ioi9 -2.499 56 X I O l 9  
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The first two terms of formula (24), i.e. coefficients A and B, agree with the similar 
result presented by Zinn-Justin (1981a), who at first ‘guessed’ that A and B had a 
form SK = cK In K + d K  and then applied the Neville procedure for the numerical 
analysis of 94 terms of the ‘perturbation’ expansion of As/2ao. 

6. Intrinsic error in the asymptotic expansions for E, and A E  

It is known that for the alternating asymptotic series the highest accuracy is achieved 
when the series is terminated just before the term which is smallest in magnitude. The 
error of the sum in such cases does not exceed in magnitude the first discarded term 
(Gradshteyn and Ryzhik 1965). We have supposed that the same rule is valid for the 
asymptotic series which arise in the double-well problem, though all the terms in the 
series here have the same sign. 

As we have already determined the large-K behaviour of coefficients EK, we are 
able to estimate the value of the smallest term in expansion Ept for the fixed but large 
enough R2  

w = ( E K / R 2 K ) m i n =  - ( 3 / 2 ~ ) ” ~ 4 R  e-!R2[1 -(31/12R2)+O(R-4)]. 

Comparison of (26) and (15) shows that the leading term of SE essentially exceeds 
intrinsic error of Ept and, therefore, SE should be taken into account in calculations 
of E, by formula (21). 

Similarly we can find the intrinsic error for the asymptotic expansion of A E :  

and, consequently, come to the conclusion that in the calculation of AE using formula 
(22), the term SE should be taken into account. The terms -a: etc at any R, where 
the asymptotic expansion for E, is meaningful, are essentially smaller than w and, 
therefore, should not be taken into account. Similarly, the terms -a: etc are meaning- 
less in calculations of AE. When asymptotic formulae are used for calculations of E, 
and E,, there is no need to take into account the terms -a; (in contrast to the case 
of AE = E,  - Eg!). 

7. The calculation of f ( E )  

As was mentioned above, the level width r of the O ( 2 )  anharmonic oscillator with 
negative anharmonicity and y for double-well potential are connected by formula (18) 
r = y + O ( a i )  - a:. Therefore, in the asymptotic expansion of E O s c  the real exponen- 
tially small term -T2-a:  (Damburg and Propin 1983) and consequently 

(28) 

If we calculate E, and Re E O s c  separately by using asymptotic formulae, then the terms 
-a: are meaningless. But when we calculate f( E) ,  then in the asymptotic expansion 
of SE after we have taken into account all terms which are larger than the smallest 
one, we should include also some terms which are -a:. However, the calculation of 
many terms in the asymptotic expansion of SE is a difficult algebraic problem which 
we would not tackle. 

f(E) = &-Re EOsc= SE +O(a:). 
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8. Comparison of numerical data with the results obtained by asymptotic formulae 

In order to compare asymptotic formulae with the 'exact' results, we solved numerically 
equations (1 )  and (7) by using the known methods (see for example Damburg and 
Kolosov 1983). We computed E,, E,,, Re E O s c  and for different values of R 2 .  By 
use of the necessary recurrence relations we also calculated numerical (exact) values 
of the coefficients EK and aK for large enough K. We were also using the exact values 
of the coefficients b, calculated by Silverstone et al (1981). In tables 2 and 3, we 
present comparisons. 

Table 2. Comparison of exact values of E,  and Re E"'' with perturbation value Ep,. 

EP,, formula (2) 

w ,  formula (26) R E,."", Re E",::, E,, N Unum 

2.6 0.454 130 198 0.451 673 034 0.451 578 719 7 -0.51 X -0.54X 10-3 
3.0 0.467 156 216 0.466 931 404 0.466 937 330 I O  -0.37 X -0.36 X 

3.2 0.471 858 273 0.471 804231 0.471 803 728 13 -0.78 X IO-' -0.78 X IO-' 
3.6 0.478 577 160 0.478 575 068 0.478 574 991 17 -0.25 X -0.25 X 

4.0 0.483 053 433 0.483 053 384 0.483 053 390 21 -0.51 X IO-', -0.51 X 
~~~ ~~~ ~ 

N is the number of terms taken into account in formula (2). unum is the value of the smallest term in (2) 
which is not taken into account in the calculation of Ept. 

Table 3. Comparison of exact values f( E )  with S E  

R f ( E ) n u m  6E, formula ( l 5 ) t  

2.6 0.2457 X 0.2583 x lo - *  
3.0 0.2248 X 0.2284 X 

3.6 0.2092 x 0.2097 X IO-' 
4.0 0.49 x IO-' 0.495 X IO-' 

+ In formula (15) terms -ai In R / R 8  etc were not taken into account 

3.2 0.5404 X 0.5447 x  IO-^ 

From the data presented in tables 2 and 3, it is clear that the theoretical conclusions 

( 1 )  The value Re Eo" with asymptotic accuracy can be represented by Ept. 
(2) To obtain E,, the value SE should be added to Ep,. 
(3) In both cases the error of calculation does not exceed the magnitude of the 

smallest term of the expansion (8), which is not taken into account in the calculation 
of Ept. Similar comparisons for A E  are given in table 4: 

stated above are fully justified: 

Table 4. Exact values A E / 2 a 0  and their asymptotic counterparts. 

3.0 0.807 181 09 0.806 742 96 10 0.000 7 14 83 -0.000 416 
3.2 0.835 4079 0.835 2610 12 0.000 1955 -0.000 0968 
3.6 0.874 8207 0.8748128 16 0.000 009 08 -0.000 003 48 
3.8 0.889 041 0.889 039 18 0.000 001 59 -0.000 000 546 

N is the number of terms in (6) used for calculation of he. wkum is the value of the smallest term in (6) 
which is not taken into account in the calculation of Ae. 
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It is seen from table 4 that in all cases the difference IAE,,,-A&l> Iw'I. At the 

Thus, in table 4, we give a numerical illustration of the presence of the terms - a i  
same time IAE,,,- ( A &  + S E ) [  < Iw'I. 

in the asymptotic expansion for AE. 

9. Multiple power exponential terms in the O(2) anharmonic oscillator with negative 
anharmonicity 

As we have already mentioned (Damburg and Propin 1983), in order to obtain the 
exponentially small terms in the asymptotic expansion for E for the equation (7),  we 
can use the same procedure which has been used for the double-well potential. 
Consequently, in E,, and in corresponding expansions of the wavefunction, we use 
the substitution n -+ n +iA, A - ai-exp(-$R2).  As a result, we obtain 

E = Ep,+fiT+O(A2), 

= 2A d Ep,/dn + O( A ') = 2 v a i  bK / R2K + O( A 2 ) .  
K = O  

To obtain the exponentially small terms - A 2  (terms in higher powers of A appear to 
be less than the intrinsic errors in the asymptotic expansions considered below), it is 
necessary to use the relation 

A = (- 1)2A'"'A ( n  + i A  (n)), (30) 

which similarly to the relation ( 1  1)  represents the result of the matching of the solutions 
of equation (7) obtained for different regions of y. 

We considered earlier the real term - A 2  and by using it derived formulae asymptotic 
in K for the coefficients bK (Damburg and Propin 1983). The imaginary term - A 2  
produces a correction to the level width r: 
raS=2(A -277A2)dE,,/dn=r,+r2 

By using the formula for bK, asymptotic in K ,  obtained earlier it is easy to check that 
for large R, lr2/rYinl- R/ln R, where rYin is the smallest term of the first sum. 
Therefore, strictly speaking, in the formula (31) it is necessary to take. into account 
both terms. Some comparisons are given in table 5. 

As can be seen from table 5, the difference r,,, - Fa, is smaller in magnitude than 
the Ir;lini, but this is not true for the difference rnum-TI. The terms which are - A 2  

Table 5. Accuracy of asymptotic formula (31) for r. 

R r"", r ,  N r, r.. = r ,  +r, r ;"n 

2.6 0.400 07 x IO-, 0.405 IS x I O - *  7 -0.639 x 0.398 76 x I O - 2  -0.365 x 
3.0 0.321 6 8 6 x  0.322 156x  IO-' I O  - 0 . 3 6 9 ~  0.321 787 x IO-' -0.221 x 
3.2 0 . 7 3 7 9 l O ~ I O - ~  0.738 I ~ O X I O - ~  12 - 0 . 1 8 9 ~ 1 0 - ~  0.737951 x ~ O - ~  - 0 . 1 1 4 ~ 1 0 - ~  
3.6 0.266 006 X IO- '  0.2660088 X IO-' 16 -0.238 X IO-'' 0.266 0064X IO-' -0.141 x lo-'' 

N is the number of terms which are taken into account in first sum of (31) 



3502 R Damburg, R Propin and V Martyshchenko 

should also be taken into account in determining the large-K behaviour of EK.  Inserting 
the value r, +r2 in (23) instead of y, we obtain 

A K = -  3 T ( K + 1 ) ( 1 - g ( K + l )  2K+I 88 + 8 1 ( K + l ) K - 2 1 8 7 ( K + l ) K ( K - l )  133 394 +...). (32) 

As was noted above, EK for the O(2) anharmonic oscillator with negative anharmon- 
icity agrees exactly with EK for the double-well potential. In order to obtain the second 
series in (32) and in the derivation strictly confining to the ‘boundaries’ of the 
double-well problem, one would need to consider in formula (19) the terms -a:. 

However, it would be difficult to separate such terms from the terms of the same 
order -a:, which are ‘responsible’ for the large-K behaviour of the coefficients in 
expansion in power series of 1/R2 of the value 6Ela; .  But it is clear that performing 
the task, we would come inevitably to the same result, i.e. to formula (32). 

518 

Table 6 provides comparisons with numerical data for EK, where 

4 r( K - j + 1)  K + I  

BK = b,. 
1-0 (5) r ( K  + 1 )  

(0) E As can be seen from table 6, the difference Eynum/EK - K.as/Efl is less in 
magnitude than the smallest term in B K  (this term has not been taken into account in 
the calculation of EK,as) .  At very large K ,  the value of AK becomes essentially larger 
than many terms in the vicinity of the term smallest in magnitude, BK. However, it 
would be difficult to confirm this statement by numerical data since it would require 
calculations of EK at K - 103-104 to many significant figures. 

Table 6. Exact values EK,num/E(KO) and their asymptotic counterparts. 

The smallest 
K EK.num/EP E, N A, term in E, 

15 0.786 265 0.787 168 7 -0.921 X -0.825 X 

20 0.845 181 9 0.845 267 8 9 -0.513 X -0.446 x 
25 0.877 943 30 0.877 946 57 12 -0.230 X -0.199 x 1 0 - ~  
30 0.899 071 999 6 0.899 072 102 0 15 -0.939 x IO-’ -0.808 X lo-’ 

10. Conclusion 

In the present paper the role of different powers of exponentially small terms in the 
asymptotic expansion of energy was considered for the first time. These terms are due 
to quantum-mechanical tunnelling. It is shown how to use them to determine the 
large-K behaviour of the Kth coefficient of the ‘perturbation expansion’ for Ept, AE, 

etc. It is also shown that in calculations using asymptotic formulae, the highest 
accuracy can be achieved only if corresponding exponentially small terms (if they 
exist) are taken into account. However, we should emphasise that the main motivation 
for our investiagation was not the elaboration of the asymptotic procedure for obtaining 
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numerical values E,, AE,  etc. The problems considered can be easily solved by 
direct numerical methods. Our aim was the study of the nature of the perturbation 
theory of large order. 

Appendix 

The corrected expressions for formulae (186) and (27b) of the paper by Damburg and 
Propin ( 1971) are: 

( K )  d-, . K ,T(n+2s+1)(2s- l ) ! !  ( K ) -  min(n.2K) I ' ( n + l )  
s = l  r(2-s + 1)T(n + 1) a ,  s = l  r(n - - s  + 1 ) q - s  + 1) c dbK'= C ( - 1 )  2 

(18b) 
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